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Vehicle classification information is vital to almost all types of trans-
portation engineering and management applications, such as pavement 
design, signal timing, and safety. Although the vehicular length–based 
classification scheme is widely used by state departments of transporta-
tion, this scheme lacks the capability of accurately producing axle-based 
classification data. Limited by the capital cost, axle-based vehicle clas-
sification data sources are very narrow. This paper presents an image 
segmentation–based vehicle classification system with an attempt to 
increase the efficiency of axle-based vehicle classification. The video-
based vehicle classification system Rapid Video-Based Vehicle Iden-
tification System (RVIS) is developed to identify the number of axles 
automatically from ground-truth videos. Through the testing of individ-
ual vehicle image data sets, it is shown that the RVIS system is capable 
of successfully detecting all FHWA 13 vehicle classes. However, larger-
scale testing of the RVIS system with a predetermined set of morpho-
logical parameters produces less accurate results. Comparison of two 
testing hours shows that with greater effort in calibration, results can be 
improved significantly and a great potential for field application exists. 
The advantages of the RVIS system are its robust and fast algorithm 
and its flexibility in that it can be applied either from a mobile video  
source or at locations with traffic-monitoring videos available. The RVIS 
system is a proven vehicle classification data source that adds to other 
existing vehicle classification approaches.

Any state using traffic data for the allocation of federal funds is 
required to maintain a traffic-monitoring system that meets FHWA 
requirements. Many transportation agencies [i.e., state departments 
of transportation (DOTs) and metropolitan planning organizations] 
have recognized that traffic data support a growing variety of func-
tions and critical decision-making processes. The need for data and  
the benefits that result from the required data must be balanced against 
available and potential resources to implement an effective and effi-
cient traffic monitoring program. As part of a traffic-monitoring pro-
gram, state DOTs are required to collect vehicle count, classification, 
weight, and speed data. Since participation in federally funded pro-

grams is essential to the integrity of a state’s highway system, the 
accurate, efficient collection of traffic data becomes a critical com-
ponent of transportation infrastructure management (1). The traffic 
data programs serve a variety of traffic engineering purposes, includ-
ing planning, design, calibration, collection, distribution, analysis, 
reporting, and maintenance (2). The 2013 edition of the Traffic Moni-
toring Guide (2) defaults the application of the axle-based FHWA 13 
scheme in the vehicle classification data format requirements. Com-
mon sources of axle-based vehicle classification data are intrusive in 
nature. They include pneumatic rubber tubes, piezoelectric sensors, 
and active infrared sensors. Pneumatic tube traffic counters usually 
provide the total number of axles at the end of a count, but an adjust-
ment factor is usually required to convert the total number of axles to 
the total number of vehicles (3). The adjustment factor itself is usu-
ally an additional source of inaccuracy aside from the undercounting 
problem. A survey of state DOTs shows that the pneumatic rubber 
tube has been reported in regard to issues of data accuracy, weather 
interference, and limitations in lanes monitored (4). The piezoelec-
tric sensor is capable of counting axles by sensing the passage of 
the vehicle’s individual axles but may not be able to tell how many 
axles belong to one single vehicle. In practice, many of the auto-
matic traffic recording stations use a piezo–loop–piezo (P-L-P) or 
loop–piezo–loop (L-P-L) configuration on the freeway for better 
performance. Comparative study results show that an active infra-
red device, such as the Infra-Red Traffic Logger, provides adequate 
accuracy for the FHWA axle-based classifications in comparison 
with other commercial products, such as radar detectors (5). Active 
infrared devices are, however, usually expensive to own, install, and  
maintain.

In recent years, video and image processing techniques have been 
shown to be cost-effective in various traffic data collection and traf-
fic control applications (6, 7). Despite limits of dependence on light-
ing conditions, video-based systems have some advantages over 
intrusive axle-based vehicle methods; for example, low effect on 
the road infrastructure, low maintenance costs, robustness of feature 
detection from images, and ready availability from regional intel-
ligent transportation systems centers. It is in the interests of state 
DOTs to check the performance periodically of available automatic 
traffic recording stations. However, it would be very labor-intensive 
and almost impossible to collect data manually for quality control 
at every desirable location. An efficient and fast method and associ-
ated tool for processing video to produce accurate traffic informa-
tion are therefore needed to improve the quality and increase the 
sources for vehicle classification data acquisition. This paper hence 
presents an image segmentation approach to improve the accuracy 
of the axle-based vehicle classification.
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Yao et al. proposed a prototype of the Rapid Video-Based Vehicle 
Identification System (RVIS) with system function designs and pre-
liminary results (8). This paper extends previous work on generating 
traffic classification data in three ways: (a) improving the previously 
developed computer vision-based algorithm to extract axle-based 
vehicle classification, (b) introducing the theoretical foundations of 
the proposed method, and (c) building the capability of automati-
cally extracting traffic classification data from a larger video data 
set. The rest of the paper is organized as follows. The state-of-the-
art computer vision applications in the traffic data extraction study 
are summarized as a result of the literature review, followed by a 
description of the method and data source used in this study. Case 
studies covering the FHWA Scheme F class vehicle results are then 
provided. Finally, a summary, conclusions, and recommendations 
for further research are presented.

Summary of Existing Studies

Much research has been conducted with data extracted from video- 
and image-based tools (9–11) at the University of Cincinnati. Zhang 
et al. used virtual dual-loop detectors set up in the video screen to 
mimic the functionality of dual-loop detectors (12). That approach 
filled the gap in traffic data extraction in cases in which dual-loop 
detectors were not available. However, the method is still model-
based and has adapted the modeling errors pertaining in the system. 
Kanhere attempted to develop a video-based vehicle classification 
system with the use of pattern recognition (13). The method consid-
ered using wheels as a feature but did not provide reference to clas-
sification using the axle and its configuration. Hsieh et al. used size 
and linearity features to classify vehicles dynamically from a built 
library (14). This machine learning–based method is very dependent 
on library templates and usually requires a considerable amount 
of time and effort for the calibration process. Moreover, the clas-
sification has only four bins, representing a car, minivan, truck, and 
van truck, which may not satisfy the needs of the axle-based clas-
sification scheme. Ma and Grimson attempted to classify vehicles 
from edge points of a detected vehicle object from video (15). They 
used classification techniques to extract the vehicle shape. This effort 
is also library-based and requires a long time for learning and recog-
nizing vehicles. Recently, Yao et al. developed a computer vision-
based software tool, namely, the Rapid Traffic Emission and Energy 
Consumption Analysis (REMCAN) system (16). It enables rapid 
vehicle operating mode distribution profiling for the Motor Vehicle 
Emission Simulator (MOVES) model from video data. Clearly, the 
availability of ground-truth vehicle classification data will help to 
maximize the MOVES model capacity.

Less research effort has been reported involving the generation of 
axle-based vehicle classification data by using the recent develop-
ment in computer vision and image-processing techniques. Frenzel 
proposed a video-based system in a heuristic study focused on truck 
detection and axle counting rather than vehicle classification (17). 
Results show only a 56% axle detection rate, which is a very low rate. 
Nevertheless, no vehicle classification study was carried out in this 
study. A couple of studies applied a three-dimensional (3-D) model–
based computer vision system for vehicle classification (18, 19). The 
vehicles were modeled at the 3-D level and then categorized into 
classes. This method usually requires extensive expertise in com-
puter vision techniques and computer programming, yet it produced 
misclassifications because one 3-D model may have multiple axle 
configurations according to FHWA Scheme F.

Method

The goal of this research was to explore an axle-based vehicle clas-
sification method with the use of existing image-processing tech-
niques to fulfill the identified research gap. To achieve that goal, two 
objectives were chosen: (a) design a vehicle classification system, 
RVIS, based on vehicle axle numbers, and (b) test and validate the 
proposed axle parameter–based vehicle classification system with 
FHWA Scheme F classes. The proposed research addressed the chal-
lenges and identified the research gap through the development and 
testing of the proposed RVIS with a case study. The advantage of the 
proposed RVIS system is that it is a ground-truth video data–based, 
nonintrusive classification method. The ground-truth-based method is 
reliable since it bypasses the modeling and malfunctioning errors that 
conventional sensors might have. The video source is from a home 
entertainment grade camcorder that produces 1,024 × 768 videos at 
30 frames/s.

Figure 1 shows the system flow of the RVIS. The RVIS system 
has four modules, namely, video to image, vehicle axle extraction, 
axle-based vehicle classification, and the calibration and validation 
module. The video-to-image module enhances, splits, and resizes 
raw video data into a series of images of individual vehicles with a  
common standard size. The vehicle axle extraction module is the 
core module in this system. It detects and segments the vehicle axle 
pixels with the fuzzy C-means clustering algorithm. The vehicle clas-
sification module, which contains predefined FHWA vehicle classi-
fication axle configurations, matches and classifies the outputs from 
the axle parameter extraction module. The classification is based on 
the number of axles. Finally, a calibration and validation module is 
designed to guarantee the performance of the proposed RVIS. This 
module uses the ground-truth video to check and correct any possible 
misclassifications and errors.

Background Segmentation  
and Foreground Extraction

A robust background subtraction algorithm should be able to han-
dle lighting changes and long-term scene changes. To achieve this 
objective, the mean filter method was used. Let V(x, y, t) represent 
a video sequence in which t is the time of the video frame and  
x and y are the two-dimension pixel location variables. To estimate 
the background image, a series of sequential frames were averaged 
in a sliding time window. The background image at time t was 
calculated as follows:
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	 i	=	 ith frame of the video sequence,
	 N	=	number of sequential images taken for averaging, and
	 m	=	� number of consecutive frames between two neighboring 

sequential images.

N and m should be chosen carefully to capture an instant change in the 
environment, such as light change. After the background B(x, y) has 
been estimated, the foreground at time t can be obtained by subtracting 
B(x, y) from V(x, y, t) and thresholding it. The foreground is
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where Th is the threshold. The selection of Th would affect the 
accuracy of the foreground extraction. To remove noise in the fore-
ground image, a set of morphological operations, including open-
ing, closing, and dilation, were used in this project. Figure 2 further 
illustrates the background segmentation and foreground extraction 
process.

Fuzzy C-Means Clustering-Based  
Image Segmentation

Image segmentation is the process of segmenting a group of image 
pixels into a set of disjoint regions that have similar characteris-
tics, such as intensity, color, and texture. A considerable number  
of image segmentation techniques are available. The clustering-
based methods, which segment the feature space of the image into 
several clusters and derive a sketch of the original image, include 
K-means (20), fuzzy C-means (FCM) (21, 22), and mean-shift (23) 
algorithms. The FCM algorithm is widely applied to image segmen-
tation because it has robust characteristics for ambiguity and the 
ability to retain much more information compared with threshold-
based segmentation methods. FCM clustering is an unsupervised 
clustering technique applied to segment images into clusters with 
similar spectral properties. It uses the distance between pixels and 
cluster centers in the spectral domain to compute the membership 

function. The pixels in an image are highly correlated, and this spa-
tial information is an important characteristic that can be used to 
develop the clustering. This technique was originally introduced by 
Bezdek in 1981 as an improvement on earlier clustering methods 
(24). It provides a method that shows how to group data points that 
populate some multidimensional space into a specific number of 
different clusters.

The FCM algorithm is an iterative optimization that minimizes 
the cost function JFCM, defined as follows:
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where

	 m	=	any real number greater than 1,
	 M × N	=	number of pixels in image,
	 um

ik	=	degree of membership of xi in cluster k,
	 xi	=	 ith element of d-dimensional measured data,
	 µk	=	center of cluster with d-dimension (for images d = 2),
	 d2

i,k	=	� distance measure between object xi and cluster center µk, 
and

	 | | ∗ | |	=	� any norm expressing similarity between any measured 
data and center µk.
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FIGURE 1    System flowchart for RVIS.
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The cost function is achieved when pixels with a short distance to 
the centroid of their clusters are assigned with high membership 
values while pixels far from the centroid are assigned to low mem-
bership values. The membership function represents the probability 
(fuzziness) that a pixel belongs to a specific cluster to some degree. 
The probability is dependent solely on the distance between the 
pixel and each individual cluster center in the feature domain.

Fuzzy partitioning is carried out through an iterative optimiza-
tion of the objective function shown previously, with the update of 
membership uik and the cluster centers µk by
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where

	 ε	=	 termination criterion between 0 and 1,
	 dj	=	 jth of the d-dimensional measured data, and
	 n	=	number of iterations.

(a) (b)

(c) (d)

(e) (f)

(g)

FIGURE 2    Sample background segmentation and foreground extraction: (a) Image 1, background; (b) Image 2, new video frame;  
(c) Image 3, grayscale new video frame; (d) Image 3 subtracts (digital numeric value of whole image subtracted from another image)  
from Image 1; (e) Image 5, resulting image after black and white thresholding; (f ) Image 6, binary image of Image 5; and (g) Image 7,  
segmented foreground image by multiplying Image 6 by Image 2.
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This procedure converges to a local minimum or a saddle point of 
error.

The FCM algorithm is applied directly on the pixels of an image. 
The degree of membership of pixels in each class is therefore cal-
culated. Starting with an initial guess at each cluster center, FCM 
converges on a solution for µk representing the local minimum or a 
saddle point of the cost function. Convergence can be detected by 
comparing the changes in the membership function or the cluster 
center of two successive iteration steps.

The algorithm is composed of the following steps (25):

Step 1.  Set values for M, N, m, and ε.
Step 2.  Initialize U = [uik] matrix, U (0).
Step 3.  Set the loop counter b = 0.
Step 4.  At n-step: calculate the center vectors µ(n) = [µk] with U (n).
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Step 5.  Update U(n), U(n + 1).
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Step 6.  If | | U(n + 1) − U(n) | | < ε, then STOP; otherwise set  
b = b + 1, and return to Step 4.

In each iteration of the algorithm, M × N × k probability functions 
are calculated (k is the number of classes). Figure 3 shows an illus-
tration of the FCM clustering results. In this case, the pixels com-
posing the vehicle tires are highlighted in the crosshair (Figure 3a) 
and clustered into a group as shown in the red, green, blue (RGB) 
color space (Figure 3b). The tire pixels have an average RGB value 
of 58, 58, 58 (grayish tire colors tend to have similar RGB values) 
and share 4.23% of the total number of pixels in the image.

Axle Detection

The axle parameter extraction module fine-tunes the axle segmen-
tation and is illustrated with an example in Figure 4. This module 
takes in an input image and begins with FCM clustering to seg-
ment out the tires from the image (Figure 4b). Then, the color 
information of the image can be discarded, and it is converted into 
a grayscale image (Figure 4c). Figure 4d shows the result of mor-
phological opening (filtering out the small objects in the image) 
on the grayscale or binary image with the structuring element. 
The morphological open operations, erosion followed by dilation, 
use the same structuring element for both operations. After this, 
a hole-filling process is performed in which a hole is defined as 
a set of background pixels that cannot be reached by filling in the 
background from the edge of the image (Figure 4e). The differ-
ence between Figure 4e and Figure 4d (mathematical operation), 
which represents the wheel entity, is shown in Figure 4f. The final 
step (Figure 4g) simply extracts the segmented wheels’ parameter. 
Further axle-based classification will be performed on the basis of 
results from this step.

To reduce noise further and extract vehicle tires, two morphologi-
cal operators are used: erosion and dilation. If a foreground object 
has some holes in it, the application of these two operators will fill 
the holes. If small foregrounds that were not connected to a big 
foreground object are detected, they will be eliminated.

Erosion in a binary image can be expressed as

∩○A B Ab

b B

− =
∈

where A is a binary image. In a binary image, 1 represents white and 
0 represents black. B is a 3 × 3 matrix with a center anchor (with 
each element having a value of one) and is convolved with the entire 
image. Figure 5 shows the result of this operation on a binary image. 
It can be seen that this operator was able to eliminate the noisy and 
unwanted objects.

Dilation can be expressed as

A B Ab

b B

⊕ =
∈
∪

Figure 6 shows the result of this operation on a binary image. It can 
be seen that this operator was able to connect the relevant parts.

(a)

(b)

FIGURE 3    FCM clustering on axle pixels (RGB: 58, 58, 58; 
percentage 5 4.23%): (a) original image with marked tire pixels 
and (b) classified tire pixel cluster based on RGB value.



(e)

(a) (b)

(c) (d)

(f)

(g)

FIGURE 4    Axle detection and extraction process: (a) Image 1, input; (b) Image 2, fuzzy C-means clustering; (c) Image 3, convert image 
to grayscale; (d) Image 4, filter out small objects (binary large object); (e) Image 5, fill out closed areas in image; (f ) Image 6, subtract 
Images 5 and 4 and then convert to binary image; and (g) Image 7, feature detection and extraction.

FIGURE 5    Result of erosion operator on binary image. FIGURE 6    Result of dilation on binary image.
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This technique is used after the FCM image pixel classification. 
It has a significant effect on accuracy because it identifies the axles.

Results

The RVIS case study used video data collected on October 19, 
2013, at I-275 Mile Marker 45–46, in Cincinnati, Ohio. The case 
study results focused on covering the full spectrum of the 13 FHWA 
classes rather than single or several classes. A selection of FHWA 13 
class vehicle images from the RVIS video-to-image module is used 
to test the FCM clustering algorithm. Figure 4 shows the axle detec-
tion and parameter extraction results with the FHWA 13 vehicle clas-
sification scheme. The first image line shows the original images as 
input for the RVIS. The second image line shows the result using 
FCM segmented axles. The third image line shows the hole filling 
result from the rim of the axle. The binary images show the differ-
ence between the holes-filled image and the segmented image. The 
last image in Figure 4 shows the axle blobs where the number of 
axles is identified.

For Class 1 vehicles (i.e., motorcycles) and Class 4 vehicles (i.e., 
buses), the RVIS methods used were not axle-based. For Class 1 
motorcycles, all the rear axles of the motorcycles are covered and 
it is impossible for the program to segment them out. Therefore, in 
the case study below, Class 1 vehicles are detected only as vehicles 
with one axle. For Class 4 vehicles, the sample is an image of a 
yellow school bus (there are no other types of buses running on the 
stretch of freeway in the data collection). It is simpler to detect the 
color yellow just by its RGB values at the 255, 255, 0 range. This 
approach is a faster and more efficient way to determine the vehicle 
class if the vehicle is a yellow school bus.

Figure 7 shows the successful result of the RVIS detection of the 
axle-based FHWA 13 classes. The large-scale, automatic running of 
2 h of video data is presented in Table 1. After the video data were 
processed, the results were compared with the ground-truth images 
extracted from the video data set by the RVIS.

Table 1 summarizes the RVIS results after a 2-h test was con-
ducted. Because vehicles with a higher number of axles are on the 
road less, the sample size distribution is extremely loaded toward 
two-axle vehicles. The RVIS was able to sample out 1,397 vehicles 
from the video data and generated 842 correctly identified vehicles 
for the first hour. The detection rate was 60.27%. For the second hour, 
the sample size was 1,300, with 803 correctly identified. The detection 
rate here was 65.31%. After the 2 h of RVIS detection were averaged, 
the overall detection rate was 62.79%. The morphological operators 
(erosion and dilation) for Hour 1 and Hour 2 are calibrated to improve 
the detection rate. Table 1 results show that RVIS accuracy can be 
improved when the morphological operators are better calibrated to 
adapt to changes in the lighting environment.

Although the relative detection rate is approximately 63%, the 
RVIS system still has some advantages compared with other auto-
mated vehicle classification methods. First, the RVIS is inexpensive 
to deploy, run, and generate results because it bypasses the intrusive 
nature of traditional automated vehicle classification methods, such 
as the use of loop detectors. The RVIS could be deployed easily at 
any desired location that is in need of vehicle classification data 
with just a home camcorder. Since it is so easy to deploy video 
cameras and record the video data, the RVIS can potentially cover 
a much larger spatial territory without an investment in automatic 
vehicle classification devices. In addition, the RVIS could provide 
data at locations such as truck terminals, bus terminals, air ports, 
and logistic centers, to generate axle-based vehicle classification 

Class 1 Class 2 Class 3

(a)

Class 4 Class 5

Original

Axle Segmentation

Hole Filling

Binary Image

Axle Detection

FIGURE 7    Axle detection results for FHWA 13 classes: (a) images for Classes 1–5.
(continued)
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Binary Image

Axle Detection

Class 11 Class 12

(b)

(c)

Class 13

Original

Axle Segmentation

Hole Filling

Binary Image

Axle Detection

Class 6 Class 7 Class 8 Class 9 Class 10

Original

Axle Segmentation

Hole Filling

FIGURE 7 (continued)    Axle detection results for FHWA 13 classes: (b) images for Classes 6–10 and (c) images for Classes 11–13.
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data for the purposes of freight modeling, travel demand model cali-
bration and validation, and safety studies, among others. This ability 
alone saves capital and time and avoids the safety risks of installing 
the intrusive devices. Nevertheless, the RVIS could generate data 
when a traditional data collection method fails in conditions such as 
congestion. Under conditions such as congestion, since the traffic 
was moving very slowly or not at all, errors were introduced into 
data collection methods such as loop detectors. The RVIS, however, 
could capture the true vehicle axles since it is ground truth–based 
rather than modeled algorithm–based.

Conclusion

This research sets out an alternative vehicle classification data source 
enabling low-cost performance compared with that of traditional data 
sources such as automatic traffic recording stations. The RVIS sys-
tem helps transportation agencies’ traffic data programs to achieve 
accurate vehicle classification data, which are critical to transportation 
engineering, safety, and management applications. The proposed 
vehicle classification approach makes the following contributions to 
currently used vehicle classification data collection: the approach 
(a) provides a low-cost way of collecting vehicle classification data 
that can diagnose performance over existing data sources such as 
loop detectors and radar; (b) provides an alternative vehicle classifi-
cation data source when a traditional classification method fails; and  
(c) complements the existing vehicle classification data sources spa-
tially and temporally. Preliminary results showed that the RVIS is 
capable of providing vehicle classification information and is poten-
tially capable of providing supportive grounds for decision makers to 
confront the challenge of investing wisely in rehabilitation, main
tenance, materials, and processes. The low-cost vehicle classification 
method will expand the vehicle classification data coverage and 
performance and will return cheaper and more location-available 
results.

The case study testing the FHWA 13 classes of vehicles shows 
that the RVIS system can be an additional vehicle classification data 
source on top of existing vehicle classification data collection meth-
ods. Although results are preliminary, the RVIS system is indeed 
capable of accurately detecting all FHWA 13 vehicle classes from 

the testing images, as shown in Figure 7. Large-scale testing of RVIS 
running with a set of morphological parameters produces more accu-
rate results and should be performed. However, the second hour pro-
duced higher accuracy with a better set of calibrated morphological 
parameters. Comparison of the two testing hours shows that with a 
greater calibration effort, results can be improved. The advantages 
of the RVIS are its robust and fast algorithm and its flexibility to be 
applied either at a mobile video source or at locations where traffic-
monitoring videos are available. Therefore, RVIS expanded the 
availability of the vehicle classification data locations in the roadway 
network. Future work includes continuously improving the algo-
rithm in detection to adapt to changes in the lighting environment, 
developing a calibration protocol to produce more accurate results, 
testing with larger data sets, and improving the performance of the 
RVIS system as evaluated against other automated vehicle classifica-
tion methods. Issues related to low lighting or lighting environment 
changes should also be explored with the use of alternative video 
sources such as thermal videos. Since all video-based data collec-
tion systems are “what you see is what you get” types of applica-
tions, another potential improvement is to solve the vehicle occlusion 
issues. In addition, a thorough analysis of the economic benefit and 
cost of the proposed RVIS system in comparison with other types of 
automated vehicle classification methods would be beneficial.
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